DARSTELLUNG, EIGENSCHAFTEN, KMR-SPEKTREN, SCHWINGUNGS-SPEKTREN UND NORMALKOORDINATENANALYSE VON TRIS(TRI-METHYLSILYL)HALOGENSILANEN

HANS BÜRGER, WOLFGANG KILIAN UND KLAUS BURCZYK

Institut für Anorganische Chemie der Technischen Universität, Braunschweig (Deutschland) (Eingegangen den 9. Oktober 1969)

SUMMARY

Preparation and properties of the $(Me_3Si)_3SiX$ compounds (X=F, Cl, Br, I) are described and their NMR, IR and Raman spectra reported. A complete assignment of the vibrational spectra is given on the basis of a normal coordinate analysis. Si-Si and Si-X bonds are markedly weakened by the inductive effect of the Me₃Si groups, compared with other SiSi and SiX compounds.

ZUSAMMENFASSUNG

Die Darstellung der $(Me_3Si)_3SiX$ -Verbindungen (X = F, Cl, Br, J), ihre Eigenschaften und ihre KMR-, IR- und Raman-Spektren werden mitgeteilt. Ihre Schwingungsspektren werden über eine Normalkoordinatenanalyse vollständig zugeordnet. Verglichen mit anderen SiSi- und SiX-Verbindungen sind ihre Si-Si- und Si-X-Bindungen durch den induktiven Effekt der Me₃Si-Gruppen deutlich geschwächt.

EINLEITUNG

Von den Tris(trimethylsilyl)halogensilanen, $(Me_3Si)_2SiX$, wurden bisher nur die Chlor-, Brom- und Jod-Verbindungen als Zwischenstufen in der Synthese anderer $(Me_3Si)_3Si$ -Derivate gefasst bzw. postuliert¹⁻³; ihre Eigenschaften sind jedoch bisher nicht näher untersucht worden.

Neben dem Reaktionsverhalten interessierten uns vor allem die Schwingungsund Kernresonanz-Spektren der Tris(trimethylsilyl)halogensilane, da wir als Folge des starken induktiven Effektes der Trimethylsilyl-Gruppen (s. z.B. Ref. 3) eine ungewöhnliche Schwächung bzw. Polarisierung der Si-X- σ -Bindung erwarteten. Gleichzeitig wollten wir prüfen, welchen Einfluss die Me₃Si-Gruppen auf $d_{\pi}-p_{\pi}$ -Wechselwirkungen ausüben, wie sie z.B. im SiF₄ angenommen werden.

Im folgenden berichten wir über die Synthese der Tris(trimethylsilyl)halogensilane, ihre Spektren und die Ergebnisse einer Normalkoordinatenanalyse, die wegen der starken Kopplungen im Si₃SiX-System erforderlich ist. DARSTELLUNG

Als Ausgangsverbindung zur Darstellung der Tris(trimethylsilyl)halogensilane eignet sich das nach Gl. (1) leicht zugängliche Silan (Me₃Si)₃SiH³:

$$HSiCl_3 + 6 Li + 3 Me_3SiCl \xrightarrow{THF} 6 LiCl + (Me_3Si)_3SiH$$
(1)

Dieses reagiert mit halogenierten Kohlenwasserstoffen RX (ausser Fluoriden) unter Wasserstoff-Halogen-Austausch nach Gl. (2) zu den gewünschten Halogeniden. Die

$$(Me_{3}Si)_{3}SiH + RX \rightarrow (Me_{3}Si)_{3}SiX + RH$$

$$(II): X = CI (R = CCl_{3}, HCCl_{2})$$

$$(III): X = Br (R = C_{4}H_{9}, HCBr_{2})$$

$$(IV): X = J (R = HCJ_{2})$$

$$(2)$$

Ausbeuten nach Gl. (2) sind hoch, und die erhaltenen Verbindungen lassen sich leicht von den Begleitsubstanzen abtrennen und in reiner Form erhalten.

Die Fluor-Verbindung (I) konnten wir nach Gl. (2) nicht erhalten; Fluorkohlenwasserstoffe sind offensichtlich zu reaktionsträge. Wir fanden in der Reaktion von (III) mit SbF₃ nach Gl. (3) einen geeigneten Weg zur Darstellung von (I).

$$(III) + \frac{1}{3} \operatorname{SbF}_{3} \xrightarrow{C_{6}H_{6}/CH_{3}CN} (Me_{3}\operatorname{Si})_{3}\operatorname{SiF} + \frac{1}{3} \operatorname{SbBr}_{3}$$
(3)

TABELLE 1

PHYSIKALISCHE EIGENSCHAFTEN DER TRIS(TRIMETHYLSILYL)HALOGENSILANE n_D^{20} d₄20 Formel Nr. Schmp. Sdp. (°C) (°C) [(CH₃)₃Si]₃SiF **(I)** -- 60 42 (0.5 mm) 1.4796 0.865 [(CH₃)₃Si]₃SiCl (II) 50 93 (1.8 mm) Subl. 60 (10⁻⁴ mm) [(CH₃)₃Si]₃SiBr (III) 85--87 Subl. 60 (10⁻⁴ mm) [(CH₃)₃Si]₃SiJ 125-128 (IV) (Zers.)

Tabelle 1 gibt die physikalischen Eigenschaften der Verbindungen (I)–(IV) wieder. Sie sind bei Raum-Temperatur unter Ausschluss von Feuchtigkeit beständig und farblos; (IV) verfärbt sich bei Lichtzutritt nach braun. Ihre Hydrolyseempfindlichkeit nimmt von (I) nach (IV) zu; sie gleichen in dieser Hinsicht den Trimethylhalogensilanen.

KMR-SPEKTREN

Alle Verbindungen besitzen 27 äquivalente H-Atome, die zu einem scharfen Protonensignal Anlass geben, das nur im Falle von (I) durch die weitreichende Kopplung mit dem F-Atom als Dublett erscheint. Chemische Verschiebungen und Kopplungskonstanten sind in Tabelle 2 zusammengestellt. Sie zeigen einen stetigen Gang, der von der zunehmenden Nachbargruppenanisotropie in der Reihe $X=H\rightarrow J$ gekennzeichnet ist.

TRIS(TRIMETHYLSILYL)HALOGENSILANE

Verbindung	Lsgm.	Konz. (%)	Int. Std.	δ(CH3) (ppm)	J(¹ H ¹³ C) (Hz)	J(¹ HC ²⁹ Si) (Hz)	J(1HCSi ²⁹ Si) (Hz)
(Me ₃ Si) ₃ SiH	CCl₄	25	TMS	-0.193 ± 0.005	120.5±0.5	6.45±0.1	2.3±0.2
(I) ^b	C ₆ H ₆	30	C6H12	-0.208 ± 0.01	121.0 ± 0.5	6.50 ± 0.1	2.73 ±0.15°
(II)	$\tilde{C_6D_6}$	30	TMS	-0.210 ± 0.01	121.3 ± 0.5	6.60±0.1	3.20 ± 0.1
(111)	$C_6 D_6$	30	TMS	-0.237 ± 0.01	121.3 ± 0.5	6.75 <u>+</u> 0.1	3.15 ± 0.1
(IV)	$C_6 D_6$	30	TMS	-0.255 ± 0.01	121.1 ± 0.5	6.60 ± 0.1	3.20 ± 0.1

TABELLE 2

ILL TIMO	19 C-KMD ODENTRE	TREP TRISTERIME	זגוו זע נוס וענוד	OCENSILANE
'H-UND		N DER TRISTIKIME	INTLUCTURAL	OGENSILANE

^a Varian HA 60 bzw. HA 100. ^{b 19}F-KMR-Spektrum (Lsgm. und Int. Std. CF Cl₃; Konz. 50%): δ (SiF) + 261 ppm; $J({}^{19}F-{}^{29}Si)$ 335 ±2 Hz; $J({}^{19}F-Si-{}^{29}Si)$ 16.8 ±2 Hz, Halbwertsbreite 3.5 Hz. ^c $J({}^{1}H-{}^{19}F)$ 0.4 ±0.05 Hz.

Das Protonendublett in (I) bleibt im Konzentrationsbereich von 5–100% unverändert auflösbar, d.h. bei Raumtemperatur treten in der Zeitskala der Kernresonanz Austauschprozesse nach Gl. (4), wie sie z.B. beim $(CH_3)_3$ GeF beobachtet wurden⁴, nicht auf.

$$\mathbf{F}^{\dots}(\mathbf{Me_3Si})_3\mathbf{SiF}^{\dots}(\mathbf{Me_3Si})_3\mathbf{SiF}^{\dots} \to \cdots \mathbf{F}(\mathbf{Me_3Si})_3\mathbf{Si}^{\dots}\mathbf{F}(\mathbf{Me_3Si})_3\mathbf{Si}^{\dots}\mathbf{F}$$
(4)

Bemerkenswert ist die Lage der ¹⁹F-Resonanz sowie die Grösse der ¹⁹F–²⁹Si-Kopplungskonstanten im Vergleich zu anderen R_3SiF -Verbindungen, wie es Tabelle 3 näher erläutert. Danach besitzt (I) die grösste chemische Verschiebung und höchste ¹⁹F–²⁹Si-Kopplungskonstante, die bisher an Fluorsilanen gemessen wurde.

1 -KERNRESONANZ-PARAMETER VON FLUURSILANEN						
Verbindung	δ(ppm)ª	J(¹⁹ F- ²⁹ Si)	Literatur (Hz)			
F ₃ Si-F	163.3	170	Ref. 5, 6			
H ₃ Si-F	217	281	Ref. 5			
(CH ₃) ₃ Si~F	159	274	Ref. 7			
[(CH ₃) ₃ Si] ₃ Si~F	261	335	Diese Arbeit			

TABELLE 3

¹⁹F-KERNRESONANZ-PARAMETER VON FLUORSILANEN

^a Gegen CFCl₃ als inneren Standard.

INFRAROT- UND RAMAN-SPEKTREN

Für die im Hinblick auf eine Interpretation der Bindungsverhältnisse im Si₃SiX-System erforderliche Normalkoordinatenanalyse ist die möglichst vollständige Kenntnis der Schwingungsspektren aller Moleküle Vorbedingung. Besonderes Augenmerk ist dabei auf die Lage der Si₃SiX-Valenzschwingungen zu richten, die, abgesehen von ν (SiF), alle < 550 cm⁻¹ erwartet werden. Wir haben deshalb die IR-Spektren der Verbindungen (I)–(IV) im Bereich von 4000 bis < 100 cm⁻¹ aufgenommen und, da die IR-Spektren alleine noch keine vollständige Zuordnung der Skelettschwingungen zuliessen, auch die Raman-Spektren registriert. Tabelle 4 gibt die Messergebnisse wieder, Fig. 1 als typisches Beispiel das Raman-Spektrum von (III).

TABELLE 4	1
-----------	---

INFRAROT- UND RAMAN-SPEKTREN DER VERBINDUNGEN (I)-(IV)

(1)		(11)		(111)		(IV)		Zuordnung
IR	Raman	IR	Raman	IR	Raman	IR	Raman	
							66 w)	
					80 w		78 w }	$\delta(Si_3SiX)$
109 s		114 m	100 w	97 m	105 w	90 m	112 w J	
185 vw	163 vs	174 wsh	162 s	165 sh	163 vs	165 sh	167 vs)	
224 m		222 m	224 w	225 m	229 s	226 s	226 s	$\delta(SiC_3)$
265 s		253 s	250 w	252 s		252 s	273 vw)	
346 w	345 s	328 m	326 vs	311 m	310 s	303 s	300 vs)	
477 m	470 s		467 w		463 m		463 m }	v(Si ₃ SiX)
774 s	-	494 s	494 w	424 s	419 m	398 s	393 m J	
626 m	626 s	625 m	624 vs	624 s	623 vs	625 s	625 vs	v _s (SiC ₃)
693 m	691 s	693 m	692 m	694 s	688 s	696 s	693 s	v _{as} (SiC ₃)
748 w		748 w		746 m	741 m	748 m	743 s	ρ _s (CH ₃)
842 vs		843 vs		841 vs	836 m	843 vs	843 w (- (CU.)
				870 sh	864 w		866 w∫	$\rho_{as}(CH_3)$
1251 vs		1249 vs		1248 vs		ן 1250 vs		<u>қ (сн.)</u>
1264 m		1263 m		1261 s		1261 m (05(CI13)
1315 vw		1315 vw		1314 w		1318 w ´		$v_s + v_{as}(SiC_3)$
1403 m		1402 m		1404 m		1404 m (<u>х (сн.)</u>
1447 w		1446 vw		1445 vw		1445 w∫		0 _{as} (C113)
2902 m		2900 m		2899 m		2900 m		v _s (CH ₃)
2960 s		2960 s		2958 s		2963 s		$v_{as}(CH_3)$

Fig. 1. Raman-Spektrum von (III) im Bereich von 0–900 cm⁻¹.

TRIS(TRIMETHYLSILYL)HALOGENSILANE.

TABELLE 5

	A1 (Ra p, IR a)	A ₂ (Ra ia, IR v)	E (Ra dp, IR a)
$v_{as}(SiC_3)$	v ₁	٧g	v ₁₃ , v ₁₄
v _s (SiC ₃)	V ₂		v ₁₅
$\delta_{as}(SiC_3)$	v ₃	v ₁₀	v ₁₆ , v ₁₇
$\delta_{3}(SiC_{3})$	v4		v ₁₈
$\rho(SiC_3)$	v5	v ₁₁	v ₁₉ , v ₂₀
v(SiSi)	v ₆		v ₂₁
v(SiX)	V 7		
δ(SiSiSi))			v ₂₂
δ(SiSiX) ∫	v ₈		v ₂₃
τ(SiC₃)		v ₁₂	v _{z4}

SKELETTSCHWINGUNGEN DER TRIS(TRIMETHYLSILYL)HALOGENSILANE [$(CH_3)_3Si_3SiX$ CH₃ = Massenpunkt.

Betrachtet man die CH₃-Gruppe als Punkt der Masse 15, so verteilen sich die 36 Normalschwingungen des $(C_3Si)_3SiX$ -Skelettes mit der Symmetrie C_{3v} analog zum isotypen $(CH_3)_3SiCl^8$ wie in Tabelle 5 zusammengestellt auf die einzelnen Rassen.

Zuordnung

TABELLE 6

Die inneren Schwingungen der CH₃-Gruppe sowie die SiC₃-Valenzschwingungen v_1 , v_2 , v_{13} , v_{14} und v_{15} sind als echte Gruppenschwingungen lagekonstant; ihre Zuordnung ergibt sich durch Vergleich mit anderen Trimethylsilyl-Verbindungen⁹. Eine mögliche Aufspaltung in A_1 - und E-Komponenten lässt sich nicht beobachten. Auf Grund des vorliegenden Vergleichsmaterials⁹ erwartet man die Deformationsschwingungen der C₃SiSi-Einheit bei 160–280 cm⁻¹, wobei abgesehen von $\delta_{as}(SiC_3)$ bei ca. 230 cm⁻¹ nur mit Hilfe der Normalkoordinatenanalyse eine detaillierte Zuordnung getroffen werden kann.

Von besonderem Interesse sind die Si₃SiX-Valenzschwingungen v_6 , v_7 und v_{21} sowie die Deformationsschwingungen v_8 , v_{22} und v_{23} . Abgesehen von v(SiF) bei 774 cm⁻¹ fallen alle Valenzschwingungen in den Bereich zwischen 300 und 500 cm⁻¹, in dem keine Schwingungen der SiMe₃-Gruppen liegen. Die Si₃SiX-Deformationsschwingungen erwartet man < 200 cm⁻¹.

Qualitativ lässt sich bereits vorhersagen, dass die beiden A_1 -Valenzschwingungen v_6 und v_7 miteinander koppeln werden, so dass auch bei gleichbleibenden Bindungsverhältnissen in der Si₃Si-Gruppe mit zunehmender Halogenmasse beide

v _i	х								
	Hª	D ^a	F	Cl	Br	J	SiMe ₃ ^b		
v ₆	357	358	346	328	311	304	328		
v7	2051	1480	774	494	424	398	457		
V ₂₁	445	497/431°	477	467	463	463	457∫		

"Ref. 3. ^b Ref. 10. ^c Anharmonische Resonanz mit δ (SiSiD).

J. Organometal. Chem., 21 (1970) 291-301

Frequenzen absinken müssen. v_{21} sollte dagegen weitgehend lagekonstant sein, da bei gleichbleibenden Bindungsverhältnissen die mögliche Verschiebung durch die X-massenabhängige v_{23} kaum merklich sein wird. Die folgende Tabelle 6 stellt die Si₃SiX-Valenzschwingungen einiger Tris(trimethylsilyl)silane zusammen.

Die Nachbarschaft von v_6 und v_7 hat natürlich eine Mischung der Schwingungscharaktere zur Folge, über die aus der Normalkoordinatenanalyse nähere Aussagen zu entnehmen sind. Überdies berücksichtigt die qualitative Beschreibung nicht die sehr wesentliche Kopplung mit v_4 . Bemerkenswert ist weiterhin die Tatsache, dass v_{21} im Infrarotspektrum nur mit geringer Intensität auftritt bzw. nicht beobachtet wird.

Die < 140 cm⁻¹ gelegenen IR-Banden und Raman-Linien gehören zu den Deformationsschwingungen des Si₃SiX-Systems. Auf Grund der Rechnungen scheint lediglich $\delta_{as}(Si_3Si)(v_{22})$ in etwa lagekonstant bei ~65 cm⁻¹ aufzutreten, während v_8 und v_{23} teilweise noch tiefer liegen und wahrscheinlich nicht in allen Fällen aufgefunden wurden.

Vergleicht man die Zahl der erwarteten SiC₃-Deformationsschwingungen (8) mit der sicher beobachteten (3-4), so muss man zu dem Schluss kommen, dass einige Schwingungen der Beobachtung entgangen sind, andere zufällig entartet bzw. eng benachbart sind. Die weiter unten näher beschriebene Normalkoordinatenanalyse lässt in der Tat mehrere Schwingungen bei ähnlichen Frequenzen erwarten. Wegen der unzureichenden Information aus den Spektren wurde deshalb auch auf eine vollständige Anpassung der berechneten an die beobachteten Deformationsfrequenzen verzichtet.

NORMALKOORDINATENANALYSE

Für die Rassen A_1 und E haben wir mit den in Tabelle 5 aufgeführten Schwingungen $v_1 - v_8$ und $v_{13} - v_{23}$ unter Verwendung der Symmetriekoordinaten des isotypen $(CH_3)_3SiCl^8$ und der angenommenen Geometrie:

d(SiC) 1.89, d(SiSi) 2.34, d(SiF) 1.57, d(SiCl) 2.03, d(SiBr) 2.24 und d(SiJ) 2.46 Å, alleWinkel 109°28'

unter Verwendung eines G-Matrizen-Programms¹¹ nach der FG-Matrix-Methode¹² eine Normalkoordinatenanalyse durchgeführt und ein modifiziertes Valenzkraftfeld aufgestellt, das folgende Eigenschaften besitzt*:

- (1). Für alle Verbindungen (I)-(IV) sowie [(CH₃)₃Si]₃SiH und [(CH₃)₃Si]₃SiD³ wurden alle Kraftkonstanten der SiC₃-Gruppen sowie ihre Wechselwirkungsterme mit Si₃SiX-Schwingungen konstant gehalten und von anderen Me₃Si-Verbindungen übertragen⁹.
- (2). Haupt- und Nebendiagonalglieder von Schwingungen gleicher Koordinaten sind in A_1 und E gleich.
- (3). Nur eine begrenzte Anzahl der Nebendiagonalelemente der F-Matrix wurde von null verschieden angenommen.
- (4). Die Nebendiagonalelemente wurden nach dem Prinzip sinnvoller Potentialenergieverteilung gewählt¹³.

^{*} Vollständige Rechenausdrucke können beim erstgenannten Autor angefordert werden.

J. Organometal. Chem., 21 (1970) 291-301

TRIS(TRIMETHYLSILYL)HALOGENSILANE

Die Tabellen 7 und 8 geben die festgehaltenen und variierten, nicht abstandsnormierten Symmetriekraftkonstanten der Verbindungen (I)-(IV) wieder. Die mit diesem Kraftfeld berechneten Frequenzen sind zusammen mit den Messwerten und der angenäherten Beschreibung in Tabelle 9 zusammengestellt. Für die meisten Schwingungen bleibt der Charakter in der Reihe (I)-(IV) unverändert und lässt sich durch eine bzw. zwei Koordinaten wiedergeben. Dies gilt jedoch nicht für v_4 , v_6 und v_7 ; sie zeigen eine stetige Änderung der Charaktere mit zunehmender Halogenmasse, die von Tabelle 10 wiedergegeben wird.

TABELLE 7

F _{ij}	Wert
$\overline{F_{11}, F_{1313}, F_{1414}}^{a}$	2.51 ^b
$F_{13}, F_{1316}, F_{1417}$	-0.15
$F_{15}, F_{1319}, F_{1420}$	0.15
F_{22}, F_{1515}	2.8
F_{24}, F_{1518}	0.1
F_{26}, F_{1521}	0.25
$F_{33}, F_{44}, F_{55}, F_{1616}, F_{1717},$	
$F_{1818}, F_{1919}, F_{2020}$	0.5
$F_{35}, F_{1619}, F_{1720}$	-0.02
F_{46}, F_{1821}	0.1
F_{56}, F_{1921}	-0.2
F_{68}, F_{1673}	0.05
$F_{2122}, -F_{2123}$	-0.04

übereinstimmende F-matrix-elemente der verbindungen (I)-(IV)

^a Alle anderen $F_{ij} = 0$, ausser in Tabelle 8. ^b Dimensionen : F_r mdyn/Å, F_{ra} mdyn, F_{aa} mdyn ·Å.

TABELLE 8

	(I)	(11)	(III)	(IV)
F66	1.584	1.50	1.46	1.44
F ₆₇	0.14	0.04	0	0
F77	3.85	1.82	1.33	1.05
F ₈₈	0.45	0.40	0.38	0.35
F ₂₁₂₁	1.46	1.45	1.44	1.44
F ₂₃₂₃	0.50,	0.42	0.35	0.30
F_{1323}, F_{1423}	0.05	0	0	0

VARIABLE F-MATRIX-ELEMENTE DER VERBINDUNGEN (1)-(IV)

^a Dimensionen wie in Tabelle 7.

Lediglich für die Verbindungen (I) und (II) grenzen die beobachteten Frequenzen die SiSi- und SiX-Kraftkonstanten eng ein. Geht man jedoch bei (III) und (IV) davon aus, dass F_{66} gegenüber (I) und (II) nicht ansteigen sollte, was auch aus den gut fixierten Kraftkonstanten F_{2121} folgt, und dass F_{67} mit sinkendem F_{77} ebenfalls kleiner werden sollte, so ergeben sich auch für (III) und (IV) enge Bereiche für F_{77} .

Von besonderer Bedeutung ist weiterhin das Kopplungsglied F_{46} , das v_4 , v_6 und damit F_{66} sowie die Potentialenergieverteilung wesentlich beeinflusst. Wir glau-

TABELLE 9

BEOBACHTETE UND BERECHNETE FREQUENZEN DER VERBINDUNGEN (I)-(IV) UND IHRE VORHERRSCHENDEN KOORDINATEN

vi	v _i (I)		(II)		(III)	(III)			Koordinate
Beob.	Ber.	Beob.	Ber.	Beob.	Ber.	Beob.	Ber.		
$\overline{A_1 v_1}$	693	688	693	688	694	687	696	687	S ₁
v ₂	626	623	625	623	624	622	625	622	S ₂
V 3	224/265	248	222/253	238	226/252	233	226/252	232	$S_{3}(S_{5})$
v ₄	163	159	162	157	163?	147	167?	131	a
Vs	224	211	174	190	165	164	165	161	S ₅ (S ₃)
V ₆	346	347	328	328	311	313	303	304	a
¥7	774	774	494	494	424	424	398	397	a
vs	?	69	?	64	?	58	66?	53	S ₈
E v ₁₃	693	686	693	688	694	688	696	688	S13
v14	693	717	693	717	694	717	696	717	S ₁₄
v15	626	623	625	624	624	623	625	623	S15
V16	224	238	222	237	226	238	226	237	S ₁₆
V17	224	222	.222	222	226	222	226	222	S ₁₇
v ₁₈	265	269	253	257	252	257	252	253	$S_{18}(S_{20})$
v ₁₉	163	145	162	147	163	147	167	147	$S_{19}(S_{21})$
V20	163	169	162	166	163	165	167	166	$S_{20}(S_{18})$
V ₂₁	477	479	467	468	463	465	463	462	S ₂₁
V 2 2	?	63	?	62	?	58	66?	66	$S_{22}(S_{23})$
v ₂₃	163	157	100?	98	80?	71	78?	50	S ₂₃ (S ₂₂)

^a s. Tabelle 10.

TABELLE 10

POTENTIALENERGIEVERTEILUNG FÜR DIE SCHWINGUNGEN v_4 , v_6 UND v_7 DER VERBINDUNGEN (I)-(IV)

	v ₄	۳ ₆	٣7
(I)	47 S_4^{a} , 20 S_5 , 19 S_6	$\begin{array}{c} 64 S_6, 36 S_4 \\ 48 S_6, 45 S_4 \\ 47 S_4, 28 S_6, 13 S_7 \\ 45 S_4, 17 S_{42}, 16 S_7 \end{array}$	96 S ₇
(II)	49 S_4 , 23 S_6 , 13 S_5		74 S ₇ , 15 S ₆
(III)	35 S_6 , 34 S_4 , 22 S_7		48 S ₇ , 33 S ₆
(IV)	38 S_7 , 29 S_6 , 16 S_7		45 S ₆ , 34 S ₇

^a $v_k = F_{dia} \cdot L_{ik}^2 \cdot 100 / \sum_{ij} (F_{ij} \cdot L_{ik} \cdot L_{jk})$

ben jedoch, dass sowohl auf Grund der berechneten Potentialenergieverteilung als auch der ähnlichen bzw. gleichen Grösse von F_{66} und F_{2121} unser Wert für F_{46} sinnvoll ist.

DISKUSSION

Als Basis für Vergleiche mit anderen Molekülen eignen sich die in Tabelle 11 für (I)-(IV) sowie [(CH₃)₃Si]₃SiH³ zusammengestellten Valenzkraft- und Wechselwirkungskonstanten.

TRIS(TRIMETHYLSILYL)HALOGENSILANE

(Me ₃ Si) ₃ SiX X=	f(SiSi)	f(SiSi/SiSi')	f(SiX)				
н	1.44	0	2.405				
F	1.50	0.04	3.85				
ĊI	1.47	0.02	1.82				
Br	1.45	0.01	1.33				
l	1.44	0	1.05				

TABELLE 11

1 ten in mdyn/Å

Si–Si-Bindung

Die SiSi-Valenzkraftkonstanten zeigen mit sinkender Elektronegativität eine geringfügige Abnahme von 1.50 auf 1.44 mdyn/Å. Wenngleich eine Abnahme in dieser Richtung sinnvoll ist und sich auch aus den Spektren zwangsläufig ergibt. so ist sie mit einem Betrag von 0.05 mdyn/Å kleiner als die Unsicherheit der SiSi-Valenzkraftkonstanten selbst.

Mit ca. 1.5 mdyn/Å in den Tris(trimethylsilyl)silanen liegt f(SiSi) deutlich unterhalb der Werte jener Verbindungen, für die vergleichbar zuverlässige SiSi-Kraftkonstanten berechnet wurden (s. hierzu auch Ref. 14, S. 143).

(Me ₃ Si) ₃ SiX	f (SiSi)	1.44-1.50 mdyn/A
Si ₂ H ₆		1.73 (Ref. 15)
Si ₂ J ₆		1.9)
Si ₂ Br ₆		2.1 (Ref. 16)
Si ₂ Cl ₆		2.4)

Die SiSi-Kraftkonstante in Polysilanen ist also stark von den Substituenten des Si abhängig. Der Wert der Tris(trimethylsilyl)silane dürfte nahe dem unteren, durch induktive Beeinflussung erreichbaren, Grenzwert liegen.

SiX-Kraftkonstanten

Zumindest die SiH-, SiF- und SiCl-Valenzkraftkonstanten sind auf Grund der Potentialenergieverteilung (s. Tabelle 10) sichere Werte, und wegen des universellen Charakters unseres Kraftfeldes halten wir trotz der Mischung mehrerer Koordinaten und der Unsicherheit der einflussreichen Kopplungskonstanten die Werte f(SiBr) und f(SiJ) für zuverlässig. Die Tabelle 12 stellt Vergleichswerte von SiX-Valenzkraftkonstanten zusammen.

Das Ausmass der Erniedrigung der SiX-Kraftkonstanten zwischen den Extremen SiX₄ bzw. H₃SiX und den (Me₃Si)₃SiX-Verbindungen ist ungewöhnlich gross und übertrifft in seiner Grössenordnung die Effekte bei analogen Kohlenstoff-Verbindungen bei weitem. Diese Feststellung bezieht sich auch auf die SiH-Bindung, die eine reine σ -Bindung ist und folglich nur induktiv, nicht mesomer, beeinflusst werden kann. Sie belegt weiterhin die Erkenntnis, dass die Me₃Si-Gruppe zu den am stärksten elektronen-"schiebenden" Gruppen überhaupt zählt.

Die Zahlenwerte aus Tabelle 11 belegen weiterhin, dass die SiX-Bindung bei zunehmender Masse bzw. sinkender Elektronegativität von $X(F \rightarrow J)$ stärker beeinflussbar wird. Insgesamt muss man aus den Ergebnissen schliessen, dass sowohl der

300

SIX-VALENZKRAFTKONSTANTEN VERSCHIEDENER SILICIOM-VERBINDUNGEN IN MDYN/						
x	SĩX₄	Cl ₃ SiX	H ₃ SiX	(CH ₃) ₃ SiX	[(CH ₃) ₃ Si] ₃ SiX	
н	2.78ª	2.96*	2.78*	2.77	2.41	
F	6.20 ⁴	5.73°	5.32"	5.16	3.85	
Br	2.45 ^h	5.10	2.98 2.45ª	2.48 ⁻ 2.11 ^f	1.33	
J	1.79 ^h		1.95"	1.80	1.05	

TABELLE 12

SiX-valenzkraftkonstanten verschiedener silicium-verbindungen in mdyn/Å

"Ref. 15. "Ref. 17. "Ref. 9. "Ref. 18. "Ref. 19. "Ref. 20. "Ref. 21. "Ref. 16.

in der SiF- und vermutlich auch SiCl-Bindung vorhandene π -Bindungsgrad ($np_{\pi}-d_{\pi}$ -Wechselwirkungen) abgebaut wird als auch die σ -Systeme geschwächt werden, wenn die Si-Atome an zunehmend elektropositive Liganden gebunden werden.

Die Grösse der SiSi-Valenzkraftkonstanten gibt keinen Hinweis auf mögliche d_{π} - d_{π} -Wechselwirkungen in der Polysilankette, die sich in einer Verfestigung der Si-Si-Bindung dokumentieren sollten.

EXPERIMENTELLES

Substanzen

(Me₃Si)₃SiH und (Me₃Si)₃SiBr wurden wie in Ref. 3 beschrieben dargestellt. Tris(trimethylsilyl)fluorsilan (I). (III) (0.058 Mol, 19 g) in 30 ml Benzol und 10 ml Acetonitril, und 0.0275 Mol (5 g) SbF₃ werden ca. 2 Std. unter Rückfluss erhitzt, man filtriert die erkaltete Lösung unter Feuchtigkeitsausschluss ab und engt im Ölpumpenvakuum ein. Nach nochmaligem Abfiltrieren wird über eine Drehbandkolonne bei 0.5 mm fraktioniert. Ausbeute 60–70%. (Gef.: F, 7.15. C₉H₂₇FSi₄ ber.: F, 7.12%.)

 $Tris(trimethylsilyl)chlorsilan (II). (Me_3Si)_3SiH (10 g) wird unter Rühren und Eiskühlung mit 5 ml CCl₄ versetzt, nach 1 Std. zieht man HCCl₃ und überschüssiges CCl₄ im Vakuum ab und reinigt durch Vakuumsublimation. Ausbeute 80–90%. (Gef.: C, 37.6; H, 9.1; Cl, 12.1. C₉H₂₇ClSi₄ ber.: C, 38.13; H, 9.61; Cl, 12.52%.)$

Tris(trimethylsilyl)jodsilan (IV). (Me₃Si)₃SiH (0.022 Mol, 5 g) in 30 ml Benzol wird mit 0.027 Mol (8 g) CHJ₃ (Merck) versetzt, unter Rühren 3 Std. am Rückfluss erhitzt, im Vakuum von flüchtigen Bestandteilen befreit und bei 10^{-4} mm sublimiert. Farblose Kristalle erhält man durch Umkristallisieren aus Petroläther bei -40° . Ausbeute 65–80%. (Gef.: J, 34.2. C₉H₂₇JSi₄ ber.: J, 33.88%.)

Spektren

Die IR-Spektren zwischen 33 und 4000 cm⁻¹ wurden an der reinen Flüssigkeit (I), der Schmelze (II) und Nujol- bzw. Tripen-Verreibungen (III, IV) mit den Geräten Beckman IR 11 und IR 12 aufgenommen. Die Raman-Spektren wurden mit einem Cary 81-Gerät bei Anregung mit Hg 4358 an 7 mm Flüssigkeitsküvetten mit Temperiermantel aufgenommen. Das Raman-Spektrum von (I) ist unvollständig, da die Substanz fluoreszierte; alle interessierenden Banden wurden jedoch aufgefunden. (II) und (III) wurden als Schmelze untersucht. Das Raman-Spektrum von (IV) wurde mit einem Spex-Ramalog-Gerät mit HeNe-Laser-Anregung bei 6328 Å an der kristallinen Probe registriert. Wellenzahlgenauigkeit: IR $\pm 1-2$ cm⁻¹, Raman ± 3 cm⁻¹.

DANK

Wir danken Herrn Dr. F. Höfler, Graz, für die Aufnahme eines Raman-Spektrums, der Deutschen Forschungsgemeinschaft für die apparative Unterstützung und dem Fonds der Chemischen Industrie für Sachspenden und ein Stipendium an K.B.

LITERATUR

- 1 H. GILMAN UND R. L. HARRELL, J. Organometal. Chem., 5 (1966) 199.
- 2 H. GILMAN UND R. L. HARRELL, J. Organometal. Chem., 9 (1967) 67.
- 3 H. BÜRGER UND W. KILIAN, J. Organometal. Chem., 18 (1969) 299.
- 4 H. SCHMIDBAUR, Vortrag Fluor-Symposium, Göttingen, 1968.
- 5 E. A. V. EBSWORTH UND J. J. TURNER, J. Phys. Chem., 67 (1963) 805; J. Chem. Phys., 36 (1962) 2628.
- 6 T. D. COYLE, R. B. JOHANNESEN, F. E. BRINCKMAN UND T. C. FARRAR, J. Phys. Chem., 70 (1966) 1682.
- 7 S. G. FRANKISS, J. Phys. Chem., 71 (1967) 3418.
- 8 K. SHIMIZU UND H. MURATA, J. Mol. Spectrosc., 4 (1960) 201.
- 9 H. BÜRGER, Organometal. Chem. Rev. A, 3 (1968) 425.
- 10 H. BÜRGER UND U. GOETZE, Angew. Chem., 80 (1968) 192.
- 11 P. PULAY, G. BOROSSAY UND F. TÖRÖK, J. Mol. Struct., 2 (1968) 336.
- 12 E. B. WILSON JR., J. C. DECIUS UND P. C. CROSS, Molecular Vibrations, McGraw-Hill, New York, 1955.
- 13 H. J. BECHER, Fortschr. Chem. Forsch., 10 (1968) 156.
- 14 K. M. MACKAY UND R. WATT, Organometal. Chem. Rev. A, 4 (1969) 137.
- 15 J. L. DUNCAN, Spectrochim. Acta, 20 (1964) 1807.
- 16 F. Höfler, W. SAWODNY UND E. HENGGE, Spectrochim. Acta, Part A, im Druck.
- 17 H. BÜRGER UND A. RUOFF, Spectrochim. Acta, Part A, im Druck.
- 18 D. C. McKEAN, Spectrochim. Acta, 22 (1966) 269.
- 19 J. GOUBEAU, F. HAENSCHKE UND A. RUOFF, Z. Anorg. Allg. Chem., 366 (1969) 113.
- 20 H. BÜRGER, Spectrochim. Acta, Part A, 24 (1968) 1863.
- 21 H. BÜRGER UND A. RUOFF, Spectrochim. Acta, Part A, 24 (1968) 2015.

J. Organometal. Chem., 21 (1970) 291-301